Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9441, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658734

RESUMO

Peripheral blood is an alternative source of stem/progenitor cells for regenerative medicine owing to its ease of retrieval and blood bank storage. Previous in vitro studies indicated that the conditioned medium derived from peripheral blood mononuclear cells (PBMCs) treated with the iron-quercetin complex (IronQ) contains potent angiogenesis and wound-healing properties. This study aims to unveil the intricate regulatory mechanisms governing the effects of IronQ on the transcriptome profiles of human PBMCs from healthy volunteers and those with diabetes mellitus (DM) using RNA sequencing analysis. Our findings revealed 3741 and 2204 differentially expressed genes (DEGs) when treating healthy and DM PBMCs with IronQ, respectively. Functional enrichment analyses underscored the biological processes shared by the DEGs in both conditions, including inflammatory responses, cell migration, cellular stress responses, and angiogenesis. A comprehensive exploration of these molecular alterations exposed a network of 20 hub genes essential in response to stimuli, cell migration, immune processes, and the mitogen-activated protein kinase (MAPK) pathway. The activation of these pathways enabled PBMCs to potentiate angiogenesis and tissue repair. Corroborating this, quantitative real-time polymerase chain reaction (qRT-PCR) and cell phenotyping confirmed the upregulation of candidate genes associated with anti-inflammatory, pro-angiogenesis, and tissue repair processes in IronQ-treated PBMCs. In summary, combining IronQ and PBMCs brings about substantial shifts in gene expression profiles and activates pathways that are crucial for tissue repair and immune response, which is promising for the enhancement of the therapeutic potential of PBMCs, especially in diabetic wound healing.


Assuntos
Diabetes Mellitus , Voluntários Saudáveis , Ferro , Leucócitos Mononucleares , Quercetina , Transcriptoma , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Quercetina/farmacologia , Transcriptoma/efeitos dos fármacos , Ferro/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Perfilação da Expressão Gênica , Masculino , Feminino , Adulto
2.
Matrix Biol ; 128: 79-92, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485100

RESUMO

Keloid refers to a fibroproliferative disorder characterized by an accumulation of extracellular matrix (ECM) components at the dermis level, overgrowth beyond initial wound, and formation of tumor-like nodule areas. Treating keloid is still an unmet clinical need and the lack of an efficient therapy is clearly related to limited knowledge about keloid etiology, despite the growing interest of the scientific community in this pathology. In past decades, keloids were often studied in vitro through the sole prism of fibroblasts considered as the major effector of ECM deposition. Nevertheless, development of keloids results from cross-interactions of keloid fibroblasts (KFs) and their surrounding microenvironment, including immune cells such as macrophages. Our study aimed to evaluate the effect of M1 and M2 monocyte-derived macrophages on KFs in vitro. We focused on the effects of the macrophage secretome on fibrosis-related criteria in KFs, including proliferation, migration, differentiation, and ECM synthesis. First, we demonstrated that M2-like macrophages enhanced the fibrogenic profile of KFs in culture. Then, we surprisingly founded that M1-like macrophages can have an anti-fibrogenic effect on KFs, even in a pro-fibrotic environment. These results demonstrate, for the first time, that M1 and M2 macrophage subsets differentially impact the fibrotic fate of KFs in vitro, and suggest that restoring the M1/M2 balance to favor M1 in keloids could be an efficient therapeutic lever to prevent or treat keloid fibrosis.


Assuntos
Queloide , Humanos , Queloide/genética , Queloide/patologia , Fibroblastos/patologia , Proliferação de Células , Células Cultivadas
3.
Biomedicines ; 11(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37760792

RESUMO

Keloid refers to a fibro-proliferative disorder characterized by an accumulation of extracellular matrix at the dermis level, overgrowing beyond the initial wound and forming tumor-like nodule areas. The absence of treatment for keloid is clearly related to limited knowledge about keloid etiology. In vitro, keloids were classically studied through fibroblasts monolayer culture, far from keloid in vivo complexity. Today, cell aggregates cultured as 3D spheroid have gained in popularity as new tools to mimic tissue in vitro. However, no previously published works on spheroids have specifically focused on keloids yet. Thus, we hypothesized that spheroids made of keloid fibroblasts (KFs) could be used to model fibrogenesis in vitro. Our objective was to qualify spheroids made from KFs and cultured in a basal or pro-fibrotic environment (+TGF-ß1). As major parameters for fibrogenesis assessment, we evaluated apoptosis, myofibroblast differentiation and response to TGF-ß1, extracellular matrix (ECM) synthesis, and ECM-related genes regulation in KFs spheroids. We surprisingly observed that fibrogenic features of KFs are strongly downregulated when cells are cultured in 3D. In conclusion, we believe that spheroid is not the most appropriate model to address fibrogenesis in keloid, but it constitutes an efficient model to study the deactivation of fibrotic cells.

4.
J Tissue Eng Regen Med ; 16(11): 998-1007, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36005295

RESUMO

In the context of regenerative endodontics research with the development of biomaterials, this work aimed to develop and test a prototype biomimetic bioreactor of a human tooth. The bioreactor was designed to reproduce a shaped dental canal connected with a cavity reproducing the periapical region and irrigated through two fluidic channels intended to reproduce the apical residual vascular supply. A test biomaterial composed of polylactic acid/polycaprolactone-tannic acid (PLA/PCL-TA) was produced by electrospinning/electrospraying and calibrated to be inserted in a dental canal. This biomaterial was first used to evaluate its imbibition capacity and the oximetry inside the bioreactor. Then, Dental Pulp Stem Cells (DPSCs) were cultured on PLA/PCL-TA cones for 1-3 weeks in the bioreactor; afterward cell adhesion, proliferation, and migration were histologically assessed. Complete imbibition biomaterial was obtained in 10 min and oximetry was stable over time. In the bioreactor, DPSCs were able to adhere, proliferate and migrate onto the surface and inside the biomaterial. In conclusion, this bioreactor was used successfully to test a biomaterial intended to support pulp regeneration and constitutes a new in vitro experimental model closer to clinical reality.


Assuntos
Endodontia , Endodontia Regenerativa , Humanos , Células-Tronco , Regeneração , Biomimética , Polpa Dentária , Poliésteres/farmacologia , Reatores Biológicos , Materiais Biocompatíveis
5.
ACS Biomater Sci Eng ; 7(12): 5775-5787, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34846849

RESUMO

New procedures envisioned for dental pulp regeneration after pulpectomy include cell homing strategy. It involves host endogenous stem cell recruitment and activation. To meet this cell-free approach, we need to design a relevant scaffold to support cell migration from tissues surrounding the dental root canal. A composite membrane made of electrospun poly(lactic acid) nanofibers and electrosprayed polycaprolactone with tannic acid (TA) microparticles which mimics the architecture of the extracellular matrix was first fabricated. After rolling the membrane in the form of a 3D conical scaffold and subsequently coating it with gelatin, it can be directly inserted into the root canal. The porous morphology of the construct was characterized by SEM at different length scales. It was shown that TA was released from the 3D conical scaffold after 2 days in PBS at 37 °C. Biocompatibility studies were first assessed by seeding human dental pulp stem cells (DPSCs) on planar membranes coated or not coated with gelatin to compare the surfaces. After 24 h, the results highlighted that the gelatin-coating increased the membrane biocompatibility and cell viability. Similar DPSC morphology and proliferation on both membrane surfaces were observed. The culture of DPSCs on conical scaffolds showed cell colonization in the whole cone volume, proving that the architecture of the conical scaffold was suitable for cell migration.


Assuntos
Polpa Dentária , Alicerces Teciduais , Diferenciação Celular , Humanos , Regeneração , Células-Tronco
6.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445558

RESUMO

Cell-based therapy is a highly promising treatment paradigm in ischemic disease due to its ability to repair tissue when implanted into a damaged site. These therapeutic effects involve a strong paracrine component resulting from the high levels of bioactive molecules secreted in response to the local microenvironment. Therefore, the secreted therapeutic can be modulated by preconditioning the cells during in vitro culturing. Herein, we investigated the potential use of magnetic resonance imaging (MRI) probes, the "iron-quercetin complex" or IronQ, for preconditioning peripheral blood mononuclear cells (PBMCs) to expand proangiogenic cells and enhance their secreted therapeutic factors. PBMCs obtained from healthy donor blood were cultured in the presence of the iron-quercetin complex. Differentiated preconditioning PBMCs were characterized by immunostaining. An enzyme-linked immunosorbent assay was carried out to describe the secreted cytokines. In vitro migration and tubular formation using human umbilical vein endothelial cells (HUVECs) were completed to investigate the proangiogenic efficacy. IronQ significantly increased mononuclear progenitor cell proliferation and differentiation into spindle-shape-like cells, expressing both hematopoietic and stromal cell markers. The expansion increased the number of colony-forming units (CFU-Hill). The conditioned medium obtained from IronQ-treated PBMCs contained high levels of interleukin 8 (IL-8), IL-10, urokinase-type-plasminogen-activator (uPA), matrix metalloproteinases-9 (MMP-9), and tumor necrosis factor-alpha (TNF-α), as well as augmented migration and capillary network formation of HUVECs and fibroblast cells, in vitro. Our study demonstrated that the IronQ-preconditioning PBMC protocol could enhance the angiogenic and reparative potential of non-mobilized PBMCs. This protocol might be used as an adjunctive strategy to improve the efficacy of cell therapy when using PBMCs for ischemic diseases and chronic wounds. However, in vivo assessment is required for further validation.


Assuntos
Movimento Celular , Fibroblastos/fisiologia , Ferro/farmacologia , Leucócitos Mononucleares/fisiologia , Neovascularização Fisiológica , Quercetina/farmacologia , Cicatrização , Adulto , Antioxidantes/farmacologia , Meios de Cultivo Condicionados/farmacologia , Fibroblastos/citologia , Humanos , Leucócitos Mononucleares/citologia , Oligoelementos/farmacologia , Adulto Jovem
7.
Biomed Pharmacother ; 135: 111182, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33433355

RESUMO

Keloids are characterized by increased deposition of fibrous tissue in the skin and subcutaneous tissue following an abnormal wound healing process. Although keloid etiology is yet to be fully understood, fibroblasts are known to be key players in its development. Here we analyze the antifibrotic mechanisms of Halofuginone (HF), a drug reportedly able to inhibit the TGF-ß1-Smad3 pathway and to attenuate collagen synthesis, in an in-vitro keloid model using patient-derived Keloid Fibroblasts (KFs) isolated from fibrotic tissue collected during the "Scar Wars" clinical study (NCT NCT03312166). TGF-ß1 was used as a pro-fibrotic agent to stimulate fibroblasts response under HF treatment. The fibrotic related properties of KFs, including survival, migration, proliferation, myofibroblasts conversion, ECM synthesis and remodeling, were investigated in 2D and 3D cultures. HF at 50 nM concentration impaired KFs proliferation, and decreased TGF-ß1-induced expression of α-SMA and type I procollagen production. HF treatment also reduced KFs migration, prevented matrix contraction and increased the metallo-proteases/inhibitors (MMP/TIMP) ratio. Overall, HF elicits an anti-fibrotic contrasting the TGF-ß1 stimulation of KFs, thus supporting its therapeutic use for keloid prevention and management.


Assuntos
Fibroblastos/efeitos dos fármacos , Queloide/tratamento farmacológico , Piperidinas/farmacologia , Quinazolinonas/farmacologia , Pele/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Actinas/metabolismo , Adulto , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Humanos , Queloide/metabolismo , Queloide/patologia , Masculino , Pessoa de Meia-Idade , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Pró-Colágeno/metabolismo , Pele/metabolismo , Pele/patologia , Adulto Jovem
8.
J Mech Behav Biomed Mater ; 99: 206-215, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31374516

RESUMO

Keloids are pathologic scars, defined as fibroproliferative diseases resulting from abnormal wound responses, which grow beyond the original wound margins. They develop on specific pro-keloid anatomic sites frequently characterized by high stress states. The initiation and growth mechanisms of keloid are not well-understood. This study relates multimodal investigation of a keloid by using mechanical tests in vivo and imaging techniques. A single case composed of a keloid, the healthy skin surrounding the keloid, and the contralateral healthy skin on the upper arms of a woman has been investigated in extension and suction by using non-invasive devices dedicated to in vivo skin measurement. The thickness and microstructure of these soft tissues have been observed by echography, tomography and confocal microscopy. Displacement fields have been obtained by using digital image correlation. Unlike healthy skin, keloid is not a well-defined multilayer structure: the frontier between epidermis and dermis disappears. The mechanical behavior of keloid is highly different from healthy skin one. The R-parameters have been deduced from suction curves. Physical parameters as tissue extensibility, initial and final tangent moduli have been identified from the stress-strain curves. The extensibility (respectively, initial rigidity) of keloid is highly lower (respectively, higher) than that of healthy skin. To compare the final rigidity of keloid versus healthy skin, further tests have to be performed with higher strain values.


Assuntos
Queloide/diagnóstico por imagem , Queloide/patologia , Imagem Multimodal , Cicatrização , Braço/patologia , Derme/patologia , Epiderme/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Reprodutibilidade dos Testes , Pele/patologia , Estresse Mecânico , Tomografia de Coerência Óptica
9.
Cytotechnology ; 70(4): 1167-1176, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29564589

RESUMO

Primary melanocytes in culture are useful models for studying epidermal pigmentation and efficacy of melanogenic compounds, or developing advanced therapy medicinal products. Cell extraction is an inevitable and critical step in the establishment of cell cultures. Many enzymatic methods for extracting and growing cells derived from human skin, such as melanocytes, are described in literature. They are usually based on two enzymatic steps, Trypsin in combination with Dispase, in order to separate dermis from epidermis and subsequently to provide a suspension of epidermal cells. The objective of this work was to develop and validate an extraction method of human skin melanocytes being simple, effective and applicable to smaller skin samples, and avoiding animal reagents. TrypLE™ product was tested on very limited size of human skin, equivalent of multiple 3-mm punch biopsies, and was compared to Trypsin/Dispase enzymes. Functionality of extracted cells was evaluated by analysis of viability, morphology and melanin production. In comparison with Trypsin/Dispase incubation method, the main advantages of TrypLE™ incubation method were the easier of separation between dermis and epidermis and the higher population of melanocytes after extraction. Both protocols preserved morphological and biological characteristics of melanocytes. The minimum size of skin sample that allowed the extraction of functional cells was 6 × 3-mm punch biopsies (e.g., 42 mm2) whatever the method used. In conclusion, this new procedure based on TrypLE™ incubation would be suitable for establishment of optimal primary melanocytes cultures for clinical applications and research.

10.
Arch Dermatol Res ; 309(1): 55-62, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27942931

RESUMO

Keloids are pathologic scars defined as dermal fibrotic tumors resulting from a disturbance of skin wound healing process. Treatments against keloids are multiple, sometimes empirical and none of them really provides an effective tool for physicians. The lack of effective treatments is correlated with the poor understanding of keloid pathogenesis. To fill this gap, researchers need strong models mimicking keloids as closely as possible. The objective of this study was to establish in vitro a new reconstructed keloid model (RKM), by combining fibroblasts extracted from the three major area of a keloid (center, periphery, non-lesional) in a three-dimensional biomaterial. To this aim, fibroblasts of three keloid locations were extracted and characterized, and then integrated in a hydrated collagen gel matrix during a three-step procedure. The heterogeneity of fibroblasts was assessed according to their proliferative and remodeling capacities. RKMs were further visualized and characterized by both light and scanning electron microscopy. This reconstructed keloid model should be very useful for investigating keloid fibroblasts function in conditions mimicking in vivo situation. Moreover, RKM should also be a suitable model for either drug study and discovery or innovative approaches using medical devices both during cancer and cancer-like disease investigation.


Assuntos
Fibroblastos/patologia , Queloide/patologia , Pele/patologia , Engenharia Tecidual/métodos , Proliferação de Células , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Géis , Humanos , Queloide/metabolismo , Cinética , Masculino , Microscopia Eletrônica de Varredura , Fenótipo , Pele/metabolismo , Pele/ultraestrutura , Adulto Jovem
11.
Cell Tissue Bank ; 15(2): 257-65, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24532126

RESUMO

Human amniotic membrane (HAM) has biological properties which are useful for wound healing. HAM is notably one of the therapeutic alternatives for venous leg ulcer care. Indeed, a prospective clinical study has demonstrated that cryopreserved HAM transplantation for leg ulcer is feasible, safe and has beneficial effects: 80 % of the patients had a significant clinical response. Nevertheless, at the end of the 3-month follow-up period, only 20 % of the ulcers were totally closed. The aim of this work was to create and characterize a model of epidermized HAM. The method of HAM desepithelialization was validated by histology, immunohistochemistry and scanning electron microscopy. Then, de-epithelialized HAM was seeded with primary keratinocytes. After 21 days of culture, 15 at the air-liquid interface, the model obtained was analyzed histologically and by immunohistochemistry. The amniotic basement membrane was preserved during enzymatic desepithelialization of HAM. Primary keratinocytes proliferated on HAM: the model obtained showed involucrin expression and had a good basement membrane. As re-epithelialization is an important step for ulcer closure, a model of epidermized HAM could be used to speed up the healing of such wounds.


Assuntos
Âmnio/citologia , Úlcera da Perna/terapia , Pele Artificial , Pele/citologia , Cicatrização/fisiologia , Membrana Basal/citologia , Humanos , Queratinócitos/citologia , Técnicas de Cultura de Tecidos
12.
Dermatol Surg ; 39(1 Pt 1): 43-50, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23190429

RESUMO

BACKGROUND: In oncology, dermal equivalent may be indicated to cover losses of substance related to skin tumors or after the removal of skin flaps. OBJECTIVE: To report our experience of two dermal equivalents, Matriderm 1 mm with a one-stage graft (DE1) and Integra DL with a two-stage graft (DE2) in oncology. PATIENTS AND METHOD: Retrospective, single-center study involving 16 patients. RESULTS: Sixteen patients received dermal equivalents as an alternative to flaps (7 cases), over tendinous areas (7 cases), and for cosmetic purposes (2 cases). Twelve patients received DE1 and four DE2. Wound healing times with DE1 were 4 weeks less than those with DE2. Three cases of infection were noted with DE2. The use of dermal equivalents as an alternative to skin flaps was effective, and no adhesions were found over the tendinous areas. CONCLUSION: The learning curve, the two-stage graft required with DE2, and not using a vacuum-assisted closure system can explain the high infection rate. The use of dermal equivalents is particularly indicated in the treatment of skin defect in oncology. The possibility of a one-stage graft with DE1 and combination with negative pressure therapy is beneficial.


Assuntos
Neoplasias de Cabeça e Pescoço/cirurgia , Neoplasias Otorrinolaringológicas/cirurgia , Neoplasias Cutâneas/cirurgia , Pele Artificial , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sulfatos de Condroitina/uso terapêutico , Colágeno/uso terapêutico , Elastina/uso terapêutico , Humanos , Pessoa de Meia-Idade , Procedimentos de Cirurgia Plástica/métodos , Estudos Retrospectivos , Transplante de Pele/métodos , Retalhos Cirúrgicos , Infecção da Ferida Cirúrgica/etiologia , Fatores de Tempo , Cicatrização , Adulto Jovem
13.
Skin Res Technol ; 18(2): 251-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22093093

RESUMO

BACKGROUND/AIMS: Different models of reconstructed skin are available, either to provide skin wound healing when this process is deficient, or to be used as an in vitro model. Nevertheless, few studies have focused on the mechanical properties of skin equivalent. Indeed, human skin is naturally under tension. Taking into account these features, the purpose of this work was to obtain a cellularized dermal equivalent (CDE), composed of collagen and dermal fibroblasts. METHODS: To counteract the natural retraction of CDE and to maintain it under tension, different biomaterials were tested. Selection criteria were biocompatibility, bioadhesion properties, ability to induce differentiation of fibroblasts into myofibroblasts and mechanical characterization, considering that of skin in vivo. These assays led to the selection of honeycomb of polyester. CDE constructed on this biomaterial was further characterized mechanically using tensile tests. RESULTS: The results showed that mechanical features of the obtained dermal equivalent, including myofibroblasts, were similar to skin in vivo. CONCLUSION: The original model of dermal equivalent presented herein may be a useful tool for clinical use and as an in vitro model for toxicological/pharmacological research.


Assuntos
Derme/fisiologia , Fibroblastos/fisiologia , Teste de Materiais/métodos , Fenômenos Fisiológicos da Pele , Pele Artificial , Actinas/fisiologia , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Derme/citologia , Estudos de Viabilidade , Fibroblastos/citologia , Citometria de Fluxo , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Poliésteres , Estresse Mecânico , Resistência à Tração/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA